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ABSTRACT: Coarse-grained (CG) molecular simulations have
become a standard tool to study molecular processes on time and
length scales inaccessible to all-atom simulations. Parametrizing CG
force fields to match all-atom simulations has mainly relied on force-
matching or relative entropy minimization, which require many
samples from costly simulations with all-atom or CG resolutions,
respectively. Here we present f low-matching, a new training method for
CG force fields that combines the advantages of both methods by
leveraging normalizing flows, a generative deep learning method. Flow-
matching first trains a normalizing flow to represent the CG probability density, which is equivalent to minimizing the relative
entropy without requiring iterative CG simulations. Subsequently, the flow generates samples and forces according to the learned
distribution in order to train the desired CG free energy model via force-matching. Even without requiring forces from the all-atom
simulations, flow-matching outperforms classical force-matching by an order of magnitude in terms of data efficiency and produces
CG models that can capture the folding and unfolding transitions of small proteins.

1. INTRODUCTION
Molecular dynamics (MD) simulations have become a major
computational tool to study biophysical processes on
molecular scales. Presently, MD simulations at all-atom
resolution can reach multiple microseconds for small- to
medium-sized protein systems on retail hardware. By using
special-purpose supercomputers1,2 or combining distributed
computing with Markov State Modeling3,4 or enhanced
sampling approaches, it is possible to probe millisecond time
scales and sometimes beyond.5,6

Despite this progress, many biomolecular processes of
interest exceed these time and length scales by orders of
magnitude. Also, high-throughput simulations that would be
needed, e.g., to screen protein sequences for high-affinity
protein−protein interactions, cannot be efficiently done with
all-atom MD.
A common approach to go to larger time and length scales

or high-throughput simulations is coarse-grained (CG)
molecular dynamics.7−22 In “bottom-up” coarse-graining,23

one defines a mapping from the all-atom representation to the
CG model (e.g., by grouping sets of atoms to CG beads). The
choice of mapping determines the resolution and has to suit
the system as well as the scientific question, which is by itself a
challenge.13,16,24,25 Given that the CG mapping is chosen, a
frequently used CG principle is known as thermodynamic
consistency in the coarse-graining literature and as density
matching in machine learning: the CG model should generate
the same equilibrium distribution in the CG coordinates, as
one would obtain from a fully converged all-atom simulation
after applying the coarse-graining map to all simulation

frames.13 In principle, the requirement of thermodynamic
consistency uniquely defines the free energy function in the
CG coordinates, which is also known as the potential of mean
force (PMF). Ideally, if this thermodynamically consistent PMF
were known, it could be used to compute exactly any
equilibrium property expressible as an ensemble average over
the CG coordinates. Note that this definition does not
guarantee that the CG model reproduces all thermodynamic
observables, counterexamples being heat capacity, pressure,
and entropy.26−30 However, the PMF by definition involves
high-dimensional integrals that cannot be estimated for
nontrivial systems in practice. A pivotal challenge is to find a
good approximation for the PMF with tractable functional
forms to serve as the CG potential.13

Among the techniques for such bottom-up model-
ing,13,15,31−34 two methods have been explicitly developed to
approach thermodynamic consistency: variational force-match-
ing (also known as multiscale coarse-graining)32,33 and relative
entropy minimization.34 Force-matching (Figure 1a) is
straightforward to implement but requires the forces on the
CG particles mapped from all-atom sampling. Because these
instantaneous forces depend on all degrees of freedom, they
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provide a very noisy signal that makes training the CG force
field data inefficient. This approach has been connected with
the blooming field of machine-learned potentials and led to
several successes.20−22 Relative entropy minimization (Figure
1b), the Inverse Monte Carlo method,35 and Iterative
Boltzmann Inversion31 do not require forces to be recorded
and are more data-efficient but require the CG model to be
resimulated during the iterative training procedure, which can
be extremely costly and even lead to failure in convergence.
Reference 36 developed a hybrid approach combining force-
matching and relative entropy methods in order to parametrize
CG models where not all particles have force information
available.
This manuscript presents a third alternative�the f low-

matching method�which is shown to be more efficient. Our
approach combines aspects of force-matching and relative
entropy minimization with deep generative modeling. The
centerpiece of this novel method is a normalizing f low,37−39 a
generative neural network that can approximate arbitrary
probability distributions by transforming them into simple,
easy-to-sample prior distributions. Once trained, normalizing
flows can generate uncorrelated samples and compute
normalized probability densities, energies, and forces, which
makes them an exciting emerging tool for physical

applications.40−45,45,46 For example, Boltzmann generators40

use flows that are trained on MD data and energies as one-shot
importance samplers for molecular equilibrium distributions.
Other types of generative neural networks have also been used
for back-mapping of CG structures.47,48

Flow-matching applies normalizing flows to the coarse-
graining problem. Like force-matching and relative entropy
minimization, it starts from CG samples in equilibrium, which
are usually created by mapping snapshots from an all-atom
simulation to the CG space. In order to find a thermodynami-
cally consistent CG potential, the method proceeds in two
steps (Figure 1c). First, a normalizing flow is trained by density
matching, such that it learns to sample directly from the target
ensemble. Second, the CG equilibrium distribution that the
flow has learned is taught to a CG force field by force-matching
to coordinate−force pairs generated by the flow.
While this stepwise approach leans on the same underlying

principles as previous coarse-graining methods, it avoids their
key limitations. In contrast to force-matching (Figure 1a,c), it
does not rely on atomistic reference forces. Although saving
forces during the simulation is in principle straightforward to
do, in most cases of already existing long simulations, forces
have not been stored and are often nontrivial to recompute a
posteriori. To bypass the need for force data, an alternative
method has been previously proposed as the generalized
Yvon−Born−Green theory,49 which determines a CG force
field (usually as a sum of basis functions) directly according to
structural correlations. However, it is not clear whether this can
be generalized to CG force fields based on neural networks.
Additionally, the flow can generate an indefinite number of

“synthetic” configurations and forces, which do not carry noise
from the atomistic environment. In contrast to relative entropy
minimization34 and Iterative Boltzmann Inversion,31 flow-
matching does not require repeated resimulation of the CG
model during training, as the flow can generate independent
samples that represent the thermodynamic equilibrium (Figure
1b,c). In practice, by removing the need for costly simulations
during training, flow-matching makes coarse-graining by
density estimation/relative entropy methods feasible for
molecules with rare events, such as biomolecules. In contrast
to force-matching, density estimation does not suffer from the
noise problem due to the omitted degrees of freedom, and
consequently, flow-matching is significantly more data-
efficient.
Using the flow only as an intermediate offers complete

freedom in choosing the functional form of the final CG force
field. In particular, the candidate potential can incorporate the
desired physical symmetries and asymptotics20,21 as well as
share parameters across chemical space.22 Conversely, directly
using a normalizing flow as the CG force field would not be a
good idea, because transferable properties cannot be easily
incorporated into invertible37,39 or at least statistically
reversible50 neural networks, which are required by the flows.
For example, transferability across molecular systems of
different sizes and topologies requires parameter sharing and
a transformation of random variables of different dimension-
ality�features not yet supported by existing normalizing flows.
To this end, flow-matching combines the advantages of
normalizing flows and energy-based models in a novel way.
Flow-matching per se does not enable transferability. However,
it helps toward this goal by allowing the training of neural
network force fields in a data-efficient way, thus significantly
reducing the burden of generating extensive training data.

Figure 1. Overview of the flow-matching method. (a) Classical force-
matching: parameters θpot of a CG potential V(·; θpot) optimized to
minimize the mean-squared error of model forces with respect to
projected atomistic forces f on the training configurations r. (b)
Relative entropy methods: simulations performed with CG potential
to produce samples and enable evaluating (and minimizing) the
relative entropy. (c) Present method: parameters θflow of a
normalizing flow first optimized to match the CG density from the
ground-truth samples r. This defines the flow-based potential

·( ; )flow . The samples and forces from the flow are used to train
a CG potential V(·; θpot) via force-matching. Slow/inaccurate
sampling steps are highlighted in red.
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As a proof of concept, we apply the method to the coarse-
graining of small protein systems. We show that accurate CG
models can be fit to equilibrium trajectories without using
atomistic forces or intermediate simulations. Even when forces
are available, we find that flow-matching is much more data-
efficient than force-matching and yields surprisingly accurate
force fields on small data sets.

2. COARSE-GRAINING WITH FLOW-MATCHING
2.1. Coarse-Graining with Thermodynamic Consis-

tency. We consider a molecular system with atomic
coordinates R N3 in thermodynamic equilibrium following
an equilibrium distribution

R Ru( ) exp( ( )) (1)

where u is the reduced potential energy of the system, whose
exact form depends on the choice of the ensemble, e.g., u(R) =
U(R)/kT for the canonical ensemble with potential energy
U(R), temperature T, and Boltzmann constant k.
Coarse-graining considers a mapping : N n3 3 that

projects fine-grained states R onto a lower-dimensional
representation r. In the present work, we only consider linear
and orthogonal maps, r = ΞR. For nonorthogonal or even
nonlinear maps, the subsequent mathematical treatment must
be generalized.51,52 As an example, the conformational
dynamics of a protein with N atoms can be projected onto a
chosen set of beads by only considering the Cα-atoms in the
backbone (Figure 2a). Coarse-graining with thermodynamic
consistency aims at parametrizing a CG model which yields the
same density over the CG coordinates as the marginal
distribution from the original system; i.e.,

= · [ = ]r R R R( ) d ( ) ( )R r (2)

The CG model is often defined by a CG potential V(·; θpot)
with parameters: ν(·; θpot) ∝ exp(−V(·; θpot)). Two conven-
tional parametrization approaches will be introduced below. It
is important to stress that designing a CG force-field by trying
to optimize thermodynamic consistency does not imply that
also the dynamical properties are well approximated.19,53

2.2. Variational Force-Matching. One option is to
optimize a candidate potential V(·; θpot) with the force
information from the ground-truth potential u (Figure 1a).
Given a set of fine-grained samples (e.g., MD trajectory)

= R R( , ..., )T1 with corresponding forces f(R) = −∇u(R), it
is shown that the thermodynamically consistent CG potential
(eq 2) can be approximated by the potential minimizing the
variational force-matching loss33

= [ + ]f RV( ) ( ; )R f Rfpot , pot 2
2

(3)

in which Ξf is a force mapping operator dependent on map Ξ.
When infinite samples and all functional forms for V are
available, the minimization of the loss (eq 3) yields exactly the
thermodynamically consistent potential defined by eq 2. Even
with finite samples and restrictions on the V(·; θpot), the result
from the loss minimization still provides a variational
approximation in practice. Because of their enhanced
expressiveness, neural networks with physical inductive biases
have been shown to be a useful model class for the
parametrization of V(·; θpot) .20,22

2.3. Density Estimation/Relative Entropy Method.
Force-matching requires the mapped CG forces to be saved
during fine-grained sampling, which is not common practice.
Alternatively, one can directly learn a CG model via density
estimation on the observed conformational space. Density
estimation aims at minimizing the following objective

= [ ]R( ) log ( ; )Rpot pot (4)

The minimum can be interpreted as the maximum-likelihood
solution of an energy-based model trained on the projected
samples = R R( , ... )T1 . This approach can be related to
the relative entropy method in molecular simulation34 and is
used for training an energy-based model in the field of machine
learning.54 Unfortunately, computing the gradients of eq 4 with
respect to parameters generates a sampling problem.
Computing the gradient contribution of the normalizing
constant involves sampling from the model density ν, which
means that the CG model needs to be periodically resampled
during training (Figure 1b).
2.4. Flow-Based Density Estimation. We can avoid the

sampling problem of eq 4 by using the density ν(·; θflow)

Figure 2. (a) Chignolin in explicit solvent. The magenta spheres show the CG beads at Cα resolution. (b) Normalizing flow architecture used in
this work to model ·( ; )flow . After transforming the CG beads into an internal coordinate (IC) representation made from bonds (d), angles (θ),
and dihedral torsions (φ) a trainable stack of coupling layers transform them into uniform noise. See Figure S1 for a more detailed illustration of
the flow architecture. (c) Modified CGnet architecture used in this work to model ·V( ; )pot . “grad” stands for computing the gradient using
automatic differentiation.
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corresponding to a model that can be efficiently sampled, such
as normalizing flows.37−39 Flows are invertible neural networks

·( ; ): n n
flow that transform an easy-to-sample refer-

ence distribution q(z), e.g., a Gaussian or uniform density, into
our target density. If we sample z ∼ q(z) and transform it into
r = Φ(z; θflow), the resulting density is given by

= ·| |r r rp q J( ; ) ( ( ; )) ( ; )flow
1

flow flow1 (5)

Inserting eq 5 into eq 4, we get an efficient training objective.
After training, the energy of the normalizing flow

=r rp( ; ) log ( ; )flow flow (6)

approximates the CG PMF.
2.5. Variational Density Estimation. Direct density

estimation with flow models suffers from the fact that the
flow architecture is constrained in order to represent an
invertible function, which compromises their representative
power and training dynamics. As a solution, we consider
relaxing the bijectivity constraint by introducing k additional
variables and sampling a joint state = +z z z( , ) n k

0 1 from
a joint (Gaussian/uniform) reference density q(z0, z1) (Figure
2b). Now we define Φ as an invertible coordinate trans-
formation (e.g., a flow model) over those joint n + k degrees of
freedom. Similarly as before, we get the output density p(r, η;
θflow) of a transformed pair (r, η) = Φ(z0, z1; θflow). The
marginal density over r of this augmented model cannot be
computed efficiently. However, we can still optimize a
variational bound of the likelihood: we first define a joint
density = · |r r r( , ) ( ) ( ) by introducing a Gaussian
conditional density |r( ) and then minimize

= [ ]

[ ]
| R

R

p

p

( ) log ( , ; )

log ( ; )

R r

R

flow , ( ) flow

flow (7)

As shown in refs 55 and 56, normalizing flows with additional
noise dimensions can alleviate limitations of invertible neural
networks to transform a simple, unimodal, prior density to a
complex, multimodal target density.50,57,58 While the extra
dimensions do not allow us to directly compute the density
p(r; θflow), and thus r( , )flow as well as the corresponding
forces, we can still compute a joint energy model over CG
coordinates and latent variables

=r rp( , ; ) log ( , ; )flow flow (8)

which can be used to train an arbitrary model of the CG
potential as follows.
2.6. Teacher−Student Force-Matching. Our idea is to

teach the information about the distribution of the CG
coordinates r contained in a trained latent-variable model

r( , ; )flow to a “student” CG potential V(r; θpot) that does
not suffer from the architectural constraints of flows (Figure
2c). We first draw samples (r, η) from our flow model and
compute instantaneous forces over CG coordinates r:

=f r r( , ; ) ( , ; )rflow flow (9)

Any given r may correspond to different f , but on average they
give rise to the unbiased mean force:

= [ ]|f r f r( ; ) ( , ; )rpflow ( ; ) flowflow (10)

This relation allows us to efficiently train an unconstrained
V(r; θpot) via the variational force-matching objective

= [ + ]f r rV( ) ( , ; ) ( ; )r rppot ( , ) ( ) flow pot 2
2

flow

(11)

As shown in the Supporting Information (SI), the gradients of
eq 11 with respect to the θpot provides an unbiased estimator
that does not depend on θflow. The proposed approach
resembles the conventional one for coarse-graining but with
the difference being that it averages over fewer degrees η rather
than a larger amount of (mainly solvent) degrees of freedom.
As will be shown in Results, the student model can mitigate

flaws in the flow models, namely, samples that deviate from
physics laws (e.g., containing steric clashes) and the rugged-
ness of the CG free energy surface. The student model is also
regularized to entail a more robust CG potential than the
direct force output of the flow for molecular dynamics
simulation. In addition, the flexibility in choosing the
functional form of the CG free energy allows built-in
symmetries such as roto-translational energy invariance20 and
parameter sharing for obtaining a transferable force field.22

3. RESULTS
We now employ the flow-matching method to obtain CG
molecular models of small proteins. To this end, we train flows
on the CG coordinate samples extracted from all-atom
simulation trajectories. Trained flow models can generate
CG coordinates and accompanying forces, which in turn are
used to train a neural CG potential via force-matching. For
demonstration purposes, this work uses an improved version of
the CGnet architecture20 to represent the CG force field
(Figure 2c; see also Methods in the SI). Therefore, these
secondary CG models will be denoted as “Flow-CGnets”.
3.1. Flow-Matching Learning of Accurate CG Force

Fields. As a first example, we consider capped alanine, also
known as alanine dipeptide, to demonstrate that flow-matching
can learn accurate CG force fields and achieve much higher
statistical efficiency than force-matching. As in previous
work,20,22 the CG mapping is defined as slicing out the
coordinates of five backbone carbons and nitrogens (Figure
3a).
We quantify the accuracy of different methods based on

equilibrium statistics from either direct sampling (for flows) or
long simulation trajectories (for CGnets). We focus on the
joint distributions of the ϕ and ψ dihedral angles along the
backbone (i.e., Ramachandran plot, Figure 3b), which are the
main degrees of freedom for this system.59 The ground truth
for comparison comes from all-atom MD simulation (2 μs in
total; see Methods in the SI). As for baseline, we use CGnets
trained with classical force-matching20,33 employing forces
stored during all-atom simulations. As illustrated by Figure 3b,
the flow and Flow-CGnet can recover the reference
distribution to a very good approximation when only 20000
reference all-atom conformations are used. In contrast, a
normal CGnet cannot effectively model the dihedral free
energy in this low data regime, even with the additionally
available force information: The free energy minima are more
or less located according to the ground truth (representative
conformations from all-atom and two CGnet models illustrated
and compared in SI Figure S6), but the dihedral distribution
smears over the whole space. When increasing the amount of
training data, also CGnet trained with force-matching can well
approximate the free energy landscape (as reported in ref 20,
where 8 × 105 configurations and forces were used) but never
reaches the flow-matching accuracy for the available data set
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(Figure 3c). This comparison displays the advantage of the
flow-matching method, which infers the boundary of free
energy basins as well as relative weighting between different
metastable states better than force-matching, especially for
regions rarely covered by the training data, e.g., at transition
states.
3.2. Flow-Matching Delivering Better Data Efficiency

than Force-Matching. The better accuracy of Flow-CGnet
models can be attributed to higher statistical efficiency. For
illustration, we measure the effects of the training set size on
the KL divergence and mean-squared error of torsional free
energy, which are computed on a discrete histogram against
the validation data distribution.22 Concretely, we perform
training with a varying number of samples in the training set
for both flow-matching and baseline force-matching. Detailed
training setup can be found in the SI.
It can be observed that the direct samples from the flow

model rank first regarding both criteria (Figure 3c), which
renders the knowledge transfer to a student Flow-CGnet

model to be “lossy”. Nevertheless, the secondary model
provides a potential that is not only faster to evaluate but also
numerically more stable for CG molecular dynamics. Despite
that the flow model automatically provides a differentiable
energy function, it is not fully accurate in regions with low
Boltzmann probabilities: A simulation with flow potential often
visits spurious states outside of the distribution and sometimes
experiences numerical blow-ups on the boundary of training
data distribution. This issue is solved by our two-stage training
strategy, in which the CGnet can incorporate an additive,
physics-inspired term (i.e., the prior energy) to set simulation-
friendly free energy barriers and rule out outlier conforma-
tions.20 Flow samples with unrealistically high force magnitude
or located in unrealistic conformational regions can be filtered
or reweighted before feeding to the CGnet training (see
Methods in the SI). The remaining samples mostly lie in the
high-probability region, thus bringing informative forces for
force-matching training. As a result, the Flow-CGnet also
benefits from the flow’s efficiency: it achieves an equivalent
performance of CGnet at full data set size even with the
smallest tested input data amount (Figure 3c).
In SI Figure S2 we show a similar analysis of the data

efficiency of CGnet, the flow, and Flow-CGnet for the
miniprotein chignolin. As expected, the situation is even
more extreme than for alanine dipeptide: The Flow-CGnet
trained on only 2 × 104 data points is on par with the CGnet
trained on all available 1.4 × 106 data points, resulting in a 70×
data efficiency, which is expected to further increase for larger
systems.
How can the greater data efficiency of Flow-CGnet

compared to force-matching be explained? While the accuracy
of the flow to approximate the Boltzmann distribution depends
on the number of conformations used to train it, it achieves a
very good approximation with relatively few observed
conformations compared to force-matching (Figure S3).
Although its free energy surface is not necessarily well behaved
in all local details, the flow can generate abundant samples and
forces from the learned distribution, thereby cheaply reducing
the error of the trained Flow-CGnet to a similar level as the
intrinsic approximation error of the flow (Figure S3).
Additionally, the augmentation channels in the flow model
are much fewer in number and have simpler distribution than
the internal degrees of freedom in the all-atom system, and
therefore the flow’s sample forces have much less noise than
instantaneous forces stored in all-atom simulations and better
represent the CG mean force. In this sense, when a proper
sample filtering scheme and regularizations on the CGnet
models are adopted, the flow can become superior to a limited
set of all-atom data in terms of the number of samples as well
as the signal-to-noise ratio of forces it feeds to the secondary
CGnet. The performance in this test case suggests Flow-
CGnets may extend the application of neural CG potentials to
more complex macromolecular systems, where usually only a
limited amount of conformations and no forces are available.
3.3. Flow-Matching of Fast-Folding Proteins. The

flow-matching method is applied to molecular trajectories of
four small proteins from ref 5, namely, chignolin, tryptophan
cage (trpcage), the α/β protein BBA (bba), and the villin
headpiece (villin) that consist of 10, 20, 28, and 35 amino
acids, respectively (see ref 5 for simulation details). These
small proteins can be modeled by a flow that operates fully in
internal coordinates. As for other fast-folding proteins in ref 5,
some only have a marginally stable state that closely resembles

Figure 3. Application of flow-matching on capped alanine. (a) CG
mappings used for the flow and CGnets, φ0 and φ1, represent main
chain torsion angles ϕ and ψ, respectively. (b) Free energy profile of
capped alanine projected on the ϕ/ψ plane (Ramachandran plot) for
the all-atom ground truth from MD simulation (ground truth), for the
flow model, for the Flow-CGnet, and for original CGnet model
(baseline). The latter three were trained against only 20000 data
points from the reference data (vertical gray dashed lines in panel c).
(c) Model accuracy as a function of training set size for capped
alanine. Shown metrics are estimated KL divergence and MSE
between discrete free energies on the ϕ/ψ plane. Brown dashed
curves correspond to the flow after MLE training, while solid lines
show values for the CGnets trained on either the flow sample (blue)
or the all-atom ground-truth sample (orange).
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the PDB structure throughout the all-atom trajectories, e.g.,
BBL; for some fast folders, we can acquire reasonably good
flow models but the folded state cannot be stabilized by the
subsequent Flow-CGnet models, e.g., wwdomain and homeo-
domain; for the rest, the internal-coordinate-based flow model
cannot effectively capture the full free energy surface (see
Discussion section on scalability). Each trajectory corresponds

to at least 100 μs of all-atom MD. Note that the trajectories do
not contain atomistic forces, so force-matching is not an option
for parametrizing a CG force field based on these data. Relative
entropy minimization is difficult because it would require
iteratively resampling the CG model during training,
introducing excessive computational cost.

Figure 4. Flow-matching results for four fast-folding proteins. From top to bottom: (a) 10 exemplary folded samples from CG simulation (shown
in half-transparent gray color) superposed on the experimental structure (colored segments correspond to important elements in the folding
process); (b) free energy curve over RMSD for the MD, flow, and Flow-CGnet samples with PDB structure as the reference; (c) RMSD time series
excerpted from CG simulation showing folding and unfolding events; (d) average fractions of native contacts ⟨Qi⟩ in different segments of the
protein formed at each stage of the folding process (identified by the fraction of all native contacts formed, Q; segments are determined mainly
according to secondary structures and are highlighted with the corresponding color in panel a); (e) free energy landscapes of all-atom MD, flow,
and Flow-CGnet model over TICs (turquoise crosses and teal rectangles denoting experimental structures and folded state according to MD
trajectories, respectively).
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All four proteins are coarse grained using one bead per
residue placed upon the Cα (see Figure 2a). First, normalizing
flows are trained for each protein using likelihood max-
imization on the Cα coordinates. Second, synthetic position/
force pairs are generated by the flow, of which the outliers are
filtered and reweighted according to the extent they exceed the
force magnitude boundary and violate the minimum pairwise
distances, respectively. Last, the protein-specific CGnets are
optimized via force-matching on the processed flow samples.
The final CGnets are simulated using Langevin dynamics with
parallel tempering to produce equilibrium samples from the
CG model. The trajectories from the replica at the same
temperature as the all-atom simulation are used for the
analyses below. In order to show that folding and unfolding
events occur without enhanced sampling strategies, we also
performed pure Langevin dynamics simulations with learned
Flow-CGnet models. The details on the procedure of training
and simulation as well as hyperparameter choices can be found
in Methods in the SI.
3.4. Flow-CGnets Recovering Native Structures.

Figure 4 compares protein folding between the atomistic and
CG simulations. All CG models recover the folded PDB
structures up to 2.5 Å RMSD, which is of similar quality as the
reference all-atom simulations. Figure 4a shows representative
structures from the CG simulations superposed with the
experimental crystal structures, and Figure S7 provides a
detailed comparison between the CG and atomistic structural
ensembles corresponding to the different minima in the free
energy landscape of the four proteins studied, demonstrating
excellent agreement. The free energy plots over the RMSD
(Figure 4b) indicate that the CG conformational distribution
matches the projected all-atom trajectory for the folded basin:
The free energy valleys with the lowest RMSD values are
centered around almost the same RMSD value and have nearly
indistinguishable widths between the CG and MD densities,
which indicates that all CG models accurately represent the
flexibility of their respective folded states.
3.5. Flow-CGnets Matching Folding Thermodynamics

Qualitatively. Moving into the unfolded region (RMSD ≥ 5
Å in Figure 4b), the match between atomistic and CG free
energies deteriorates. While all CG models exhibit the
characteristic folding free energy barrier, the height of this
barrier and the folded/unfolded ratio differ between the MD
and CG data. Generally, the folded states are less stable in the
CG model. While the flow differs by less than kT1 from the
all-atom result, the Flow-CGnet underestimates the folding
free energy by up to 3kT.
Nevertheless, frequent transitions between folded and

unfolded configurations were observed in 50 ns simulation
runs without parallel tempering (Figure 4c). This assures that
the models still keep the two states kinetically connected.
3.6. Flow-CGnets Reproducing the Folding Mecha-

nisms. Figure 4d illustrates the sequence of formation of the
protein structure elements during folding, for the all-atom
model and the corresponding Flow-CGnet model of the four
proteins studied. The average fractions of native contacts ⟨Qi⟩
formed in different segments of the protein along the folding
process60 are reported and show that the order of formation of
the different secondary structure elements is recovered by
Flow-CGnet to a good approximation.
3.7. Flow-CGnets Well Approximating Folding Free

Energy Landscape. Figure 4e shows the joint densities over
the first two TICA coordinates;61−63 see SI Section D.5. These

reaction coordinates visualize the slowest processes in the MD
simulation, which correspond to folding and unfolding; see the
SI for details. The Flow-CGnet densities resemble the
atomistic densities, showing that the global patterns in the
folding process are captured. The match deteriorates with
increasing sequence length: for chignolin the Flow-CGnet
recovers the shape of the distribution well, for trpcage and bba
some minor metastable states are missing, and for villin some
regions that are sparsely populated in the MD data are
overstabilized.

4. DISCUSSION
4.1. Training Data Requirements. Flow-matching does

not require the forces to be saved with the simulation data and
is thus more readily applicable than force-matching. We have
also shown that matching the empirical distribution benefits
data efficiency. A drawback is that flow-matching requires the
underlying all-atom data to come from an equilibrated
ensemble. However, this does not need to be achieved by
long simulation trajectories: reweighting from biased ensem-
bles, such as replica-exchange simulations, or reweighting of
short trajectories via Markov state models3,4 is possible.
There are also theoretical developments in generalizing the

force-matching method for non-equilibrium cases, such as ref
64. In such situations (but generally whenever atomistic force
information is available), it might be beneficial to train the flow
by combining density estimation with force-matching. Such a
mixed loss can be especially efficient when using flows with
continuous forces.65

4.2. Architectural Choices for Neural Networks. The
teacher neural network needs to (i) be trainable via
(approximate) likelihood on sampling data, (ii) permit efficient
sampling, and (iii) allow us to compute the instantaneous
forces (eq 9). We found that smooth mixture flows65 on the
internal coordinates are able to reproduce the CG conforma-
tional distribution very accurately. Other latent variable
models, including different normalizing flow architectures as
well as variational autoencoders66 and their generaliza-
tions,50,67 could be used as well. Examples of other generative
networks used in coarse-graining applications can be found in
refs 25, 47, and 48.
The student neural network is trained to represent the CG

free energy. While here we used a modified version of the
simple CGnet method,20 this network could be replaced by
more advanced neural network architectures, such as SchNet,68

other graph neural networks,22,69−75 or other machine learning
methods.76 In principle, flow-matching can be combined with
any trainable CG model, either based on neural networks or
fixed functional forms with adjustable parameters.
4.3. Scalability to Larger Molecules. We observed that

the CG model quality deteriorated and eventually became
unusable for larger proteins. This is because the present
normalizing flows are built on a global internal coordinate
representation. As the length of the peptide chain grows, the
target potential energy becomes extremely sensitive with
respect to these internal coordinates. For example, a tiny
rotation of one torsion can easily cause steric clashes in a
different part of the molecule. This may lead to, for example, a
sigificant decrease of effective size of the training set after
repulsion-based reweighting (see Figure S4). Other
work40−42,45,46 has also found suitable flow architectures for
small molecules, proteins, and even explicitly solvated systems
but did not report whether they could produce quantitatively
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matching forces. One possibility to scale to large molecules is
to employ coupling flows with equivariant neural networks
operating in Cartesian space while still informed by internal
coordinates, but further work is needed in order to find
suitable architectures that can sample low-energy structures
and have the relevant physics built in.

5. CONCLUSIONS
We have developed a two-stage approach to bottom-up coarse-
graining that addresses two major problems with classical
approaches, namely, data availability and efficiency. The f low-
matching method produces thermodynamically consistent CG
models without relying on either all-atom ground-truth forces
or subsequent CG simulations. The key ingredient of our
method is a generative deep neural network that is introduced
into the optimization workflow. Compared with classical force-
matching, flow-matching combined with CGnet captures the
global thermodynamics of small peptides much more
accurately than CGnet models trained with force-matching.
Interestingly, this was even the case, when only a fraction
(<10%) of the data was used during training. The main factor
determining the data efficiency of flow-matching with respect
to force-matching is the ratio of the number of atoms versus
the number of CG particles. For the examples described in this
work�where the all-atom systems are solvated macro-
molecules and the CG models retain only a few solute
atoms�this ratio is very large, and the instantaneous all-atom
forces projected on the CG coordinates are very noisy.
Applications to four small proteins yielded CG potentials

that were able to fold and unfold the proteins via the same
pathways as all-atom MD. Biopolymers such as proteins are an
especially interesting candidate for our proposed method,
because they can be extremely difficult to sample, which makes
the speedup obtained by a CG force field more practically
attractive. Furthermore, bottom-up coarse-graining in the
present manner is applicable to many other molecular systems,
including other polymers, liquids, and materials. Thereby, the
present work opens a new and efficient path to reach near-
atomistic accuracy on scales not amenable to atomistic
simulations.
The two-step machine learning architecture consisting of a

teacher and a student model gives rise to an interesting strategy
for training transferable CG potentials: One may train separate
system-specific teacher networks (e.g., flows) and then train a
shared CG force field to obtain a transferable molecular model
across the chemical space represented by the training data.
Again, biopolymers are particularly interesting candidates for
transferable CG force fields, as they usually consist of relatively
few chemical building blocks which simplifies the para-
metrization of a force field that can generalize across all
sequences. We envisage that flow-matching will be an
important contribution to the development of transferable
CG force fields and thereby help us to access time and length
scales currently inaccessible to accurate molecular models.
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Foundation Berlin (Project 0420815101). The 3D molecular
structures are visualized with PyMOL.77
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